4,907 research outputs found

    Exploring Resonant di-Higgs production in the Higgs Singlet Model

    Get PDF
    We study the enhancement of the di-Higgs production cross section resulting from the resonant decay of a heavy Higgs boson at hadron colliders in a model with a Higgs singlet. This enhancement of the double Higgs production rate is crucial in understanding the structure of the scalar potential and we determine the maximum allowed enhancement such that the electroweak minimum is a global minimum. The di-Higgs production enhancement can be as large as a factor of ~ 18 (13) for the mass of the heavy Higgs around 270 (420) GeV relative to the Standard Model rate at 14 TeV for parameters corresponding to a global electroweak minimum.Comment: 25 pages, 14 figures. Version approved for publication. Discussion of Z2 symmetric limit improved and references adde

    Top Partners and Higgs Boson Production

    Get PDF
    The Higgs boson is produced at the LHC through gluon fusion at roughly the Standard Model rate. New colored fermions, which can contribute to gghgg\rightarrow h, must have vector-like interactions in order not to be in conflict with the experimentally measured rate. We examine the size of the corrections to single and double Higgs production from heavy vector-like fermions in SU(2)LSU(2)_L singlets and doublets and search for regions of parameter space where double Higgs production is enhanced relative to the Standard Model prediction. We compare production rates and distributions for double Higgs production from gluon fusion using an exact calculation, the low energy theorem (LET), where the top quark and the heavy vector-like fermions are taken to be infinitely massive, and an effective theory (EFT) where top mass effects are included exactly and the effects of the heavy fermions are included to O(1/MX2){\cal O}(1/M^2_X). Unlike the LET, the EFT gives an extremely accurate description of the kinematic distributions for double Higgs production.Comment: 37 pages, 11 figures. Minor changes to Figs. 8-1

    Antisymmetric magnetoresistance in magnetic multilayers with perpendicular anisotropy

    Get PDF
    While magnetoresistance (MR) has generally been found to be symmetric in applied field in non-magnetic or magnetic metals, we have observed antisymmetric MR in Co/Pt multilayers. Simultaneous domain imaging and transport measurements show that the antisymmetric MR is due to the appearance of domain walls that run perpendicular to both the magnetization and the current, a geometry existing only in materials with perpendicular magnetic anisotropy. As a result, the extraordinary Hall effect (EHE) gives rise to circulating currents in the vicinity of the domain walls that contributes to the MR. The antisymmetric MR and EHE have been quantitatively accounted for by a theoretical model.Comment: 17 pages, 4 figure

    Passenger transmission and productiveness of transit lines with high loads

    Get PDF
    Deterministic transit capacity analysis applies to planning, design and operational management of urban transit systems. The Transit Capacity and Quality of Service Manual (1) and Vuchic (2, 3) enable transit performance to be quantified and assessed using transit capacity and productive capacity. This paper further defines important productive performance measures of an individual transit service and transit line. Transit work (p-km) captures the transit task performed over distance. Passenger transmission (p-km/h) captures the passenger task delivered by service at speed. Transit productiveness (p-km/h) captures transit work performed over time. These measures are useful to operators in understanding their services’ or systems’ capabilities and passenger quality of service. This paper accounts for variability in utilized demand by passengers along a line and high passenger load conditions where passenger pass-up delay occurs. A hypothetical case study of an individual bus service’s operation demonstrates the usefulness of passenger transmission in comparing existing and growth scenarios. A hypothetical case study of a bus line’s operation during a peak hour window demonstrates the theory’s usefulness in examining the contribution of individual services to line productive performance. Scenarios may be assessed using this theory to benchmark or compare lines and segments, conditions, or consider improvements

    Archiving scientific data

    Get PDF
    We present an archiving technique for hierarchical data with key structure. Our approach is based on the notion of timestamps whereby an element appearing in multiple versions of the database is stored only once along with a compact description of versions in which it appears. The basic idea of timestamping was discovered by Driscoll et. al. in the context of persistent data structures where one wishes to track the sequences of changes made to a data structure. We extend this idea to develop an archiving tool for XML data that is capable of providing meaningful change descriptions and can also efficiently support a variety of basic functions concerning the evolution of data such as retrieval of any specific version from the archive and querying the temporal history of any element. This is in contrast to diff-based approaches where such operations may require undoing a large number of changes or significant reasoning with the deltas. Surprisingly, our archiving technique does not incur any significant space overhead when contrasted with other approaches. Our experimental results support this and also show that the compacted archive file interacts well with other compression techniques. Finally, another useful property of our approach is that the resulting archive is also in XML and hence can directly leverage existing XML tools

    On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games

    Full text link
    In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor α\alpha through unilateral strategy changes. There is a threshold αδ\alpha_\delta (where δ\delta is a parameter that limits the demand of each player on a specific resource) such that α\alpha-approximate pure Nash equilibria always exist for ααδ\alpha \geq \alpha_\delta, but not for α<αδ\alpha < \alpha_\delta. We give both upper and lower bounds on this threshold αδ\alpha_\delta and show that the corresponding decision problem is NP{\sf NP}-hard. We also show that the α\alpha-approximate price of anarchy for BAGs is α+1\alpha+1. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum

    Nano granular metallic Fe - oxygen deficient TiO2δ_{2-\delta} composite films: A room temperature, highly carrier polarized magnetic semiconductor

    Full text link
    Nano granular metallic iron (Fe) and titanium dioxide (TiO2δ_{2-\delta}) were co-deposited on (100) lanthanum aluminate (LaAlO3_3) substrates in a low oxygen chamber pressure using a pulsed laser ablation deposition (PLD) technique. The co-deposition of Fe and TiO2_2 resulted in \approx 10 nm metallic Fe spherical grains suspended within a TiO2δ_{2-\delta} matrix. The films show ferromagnetic behavior with a saturation magnetization of 3100 Gauss at room temperature. Our estimate of the saturation magnetization based on the size and distribution of the Fe spheres agreed well with the measured value. The film composite structure was characterized as p-type magnetic semiconductor at 300 K with a carrier density of the order of 1022/cm3 10^{22} /{\rm cm^3}. The hole carriers were excited at the interface between the nano granular Fe and TiO2δ_{2-\delta} matrix similar to holes excited in the metal/n-type semiconductor interface commonly observed in Metal-Oxide-Semiconductor (MOS) devices. From the large anomalous Hall effect directly observed in these films it follows that the holes at the interface were strongly spin polarized. Structure and magneto transport properties suggested that these PLD films have potential nano spintronics applications.Comment: 6 pages in Latex including 8 figure

    Influence of shear flow on vesicles near a wall: a numerical study

    Full text link
    We describe the dynamics of three-dimensional fluid vesicles in steady shear flow in the vicinity of a wall. This is analyzed numerically at low Reynolds numbers using a boundary element method. The area-incompressible vesicle exhibits bending elasticity. Forces due to adhesion or gravity oppose the hydrodynamic lift force driving the vesicle away from a wall. We investigate three cases. First, a neutrally buoyant vesicle is placed in the vicinity of a wall which acts only as a geometrical constraint. We find that the lift velocity is linearly proportional to shear rate and decreases with increasing distance between the vesicle and the wall. Second, with a vesicle filled with a denser fluid, we find a stationary hovering state. We present an estimate of the viscous lift force which seems to agree with recent experiments of Lorz et al. [Europhys. Lett., vol. 51, 468 (2000)]. Third, if the wall exerts an additional adhesive force, we investigate the dynamical unbinding transition which occurs at an adhesion strength linearly proportional to the shear rate.Comment: 17 pages (incl. 10 figures), RevTeX (figures in PostScript

    Vortex Pull by an External Current

    Full text link
    In the context of a dynamical Ginzburg-Landau model it is shown numerically that under the influence of a homogeneous external current J the vortex drifts against the current with velocity V=JV= -J in agreement to earlier analytical predictions. In the presence of dissipation the vortex undergoes skew deflection at an angle 90<δ<18090^{\circ} < \delta < 180^{\circ} with respect to the external current. It is shown analytically and verified numerically that the angle δ\delta and the speed of the vortex are linked through a simple mathematical relation.Comment: 19 pages, LATEX, 6 Postscript figures included in separate compressed fil
    corecore